If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-16x-12=0
a = 7; b = -16; c = -12;
Δ = b2-4ac
Δ = -162-4·7·(-12)
Δ = 592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{592}=\sqrt{16*37}=\sqrt{16}*\sqrt{37}=4\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{37}}{2*7}=\frac{16-4\sqrt{37}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{37}}{2*7}=\frac{16+4\sqrt{37}}{14} $
| 2x+6+7+3x=38 | | 4x-7=6x+4=180 | | 29-16+x=16 | | y^2+8=89 | | 5/6h=30 | | 1.2w-4=8 | | X*2+45+x=180 | | -7=5+a/4 | | 3x+7=5x-10 | | y2+8=89 | | -13(x-7)=28 | | 2x+6+8+3x=38 | | 1.9z-6=2.9z+9 | | 231-x=225 | | 5(3m+2)=9m+22 | | -8=2(d+5) | | 1/2m+6=10 | | 9(x+2)=-4 | | 10c=24 | | 32=-7-3x | | n^2+2n^2-9n-18=0 | | 156÷x=25 | | −4+5x=21 | | X+45.2x=180 | | 8x+11x-8=47 | | x(x-2)=3(8) | | 32=a+11 | | 156÷x=2 | | 3/4n+9=-3 | | 9/24=b/8 | | 3x=10+5Y | | -1=2x+13 |